Examen de Admisión a la Maestría / Doctorado 15 de Diciembre de 2017

Nombre:	
1. ¿Cuáles de los siguientes conjuntos es un espacio vectorial?	
$\bigcirc \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 - 3x_3 = 2\};$	
\bigcirc el conjunto de matrices de 2×2 tales que $\det(A) = 0$;	
\bigcirc el conjunto de polinomios $p(x)$ con $\int_{-1}^{1} p(x) dx = 0$;	
\bigcirc el conjunto de números reales con la suma dada por $x\oplus y=xy$ y la multiplicación por escalares dada por $a\otimes x=x^a$.	
2. Sea V el espacio vectorial de los números reales sobre el campo de los números racionales. ¿Cuáles de las siguientes afirmaciones son verdaderas?	
\bigcirc dim(V) es numerable;	
\bigcirc dim (V) no es numerable;	
$\bigcirc \dim(V) = 1;$	
$\bigcirc V$ no tiene base.	
3. Sea $S := \{(1,1,1,x), (1,1,x,1), (1,x,1,1), (x,1,1,1)\}$. ¿Para cuántos valores distintos de x, S no es una base para \mathbb{R}^4 ?	
\bigcirc 0;	
\bigcirc 1;	
\bigcirc 2;	
\bigcirc cualquier valor de x .	

4.	Considera k ecuaciones lineales en n variables, las cuales escritas en forma matricial resultan en la ecuación $AX=Y$. ¿Cuáles de las siguientes afirmaciones son verdaderas?
	\bigcirc si $n=k$ entonces siempre hay a lo más una solución;
	\bigcirc si $n > k$ entonces siempre se puede resolver $AX = Y$;
	\bigcirc si $n < k$ entonces para algún Y no hay solución de $AX = Y$.
	\bigcirc Si $n < k$ entonces la única solución de $AX = 0$ es $X = 0$.
5.	Sea A una matriz cuadrada real. La afirmación " A es invertible si y solo el cero no es un valor propio." es
	() falsa;
	○ verdadera.
6.	La afirmación "Cualquier polinomio mónico $p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$ es el polinomio característico de alguna matriz de $n \times n$." es :
	() falsa;
	O verdadera.
7.	Sea V el espacio vectorial de funciones reales continuas en el intervalo $[-\pi, \pi]$ con producto interior definido por $\langle f, g \rangle = \int_{-\pi}^{\pi} f(t)g(t)dt$. Sea $S = \{1, \sin t, \cos t, \sin 2t, \cos 2t, \dots\}$. Entonces
	\bigcirc S es ortogonal;
	\bigcirc S es ortonormal;
	\bigcirc S es una base para V .
8.	Considere a $V=\mathbb{Z}_3^n$ como espacio vectorial sobre \mathbb{Z}_3 . ¿Cuántos subespacios de dimensión 1 tiene V ?
	$\bigcirc (3^n-1);$
	$\bigcirc 3n;$
	$\bigcirc (3^n - 1)/2;$
	\bigcirc 1.

- 9. Encuentre el polinomio característico de $\begin{pmatrix} 1 & 3 & 0 \\ 2 & 2 & 1 \\ -4 & 0 & -2 \end{pmatrix}$.
 - $-t^3+t^2+10t-4$;
 - $0 t^3 + t^2 + 10t 4$;
 - () $t^3 t^2 2t 4;$
 - $\int t^3 t^2 + 2t + 4.$
- 10. Un grafo G es un par (V, E) donde $V = \{1, ..., n\}$ es un conjunto de vértices, y E es un conjunto de pares de vértices llamados *aristas*. Si $\{i, j\} \in E$ decimos que i y j son advacentes. Sea A la matriz de $n \times n$ donde $A_{ij} = 1$ si i es advacente a j y $A_{ij} = 0$ de otro modo. Supón que todo vértice de G es advacente exactamente con d otros vértices. Entonces:
 - \bigcirc $(1,\ldots,1)$ es un eigenvector de A.
 - \bigcirc A siempre es invertible;
 - \bigcirc A es triangular superior;
- 11. Supongamos que la matriz A es semejante a la matriz $B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$. Entonces:
 - $\bigcirc A^2 = A;$
 - $\bigcirc \det(A) = 0;$
 - \bigcirc traza(A) = 1;
 - $\bigcirc \lambda = 0$ es un valor propio de A;
 - $\bigcirc \lambda = 1$ es un valor propio de A.
- 12. Sea A una matriz de $n \times n$ y λ un valor propio de A con vector propio v. ¿Cuál de las siguientes afirmaciones es verdadera?
 - $\bigcirc -v$ es un vector propio de -A con valor propio de $-\lambda$.
 - \bigcirc Si B es una matriz de $n \times n$ y μ es valor propio de B, entonces $\lambda \mu$ es un valor propio de AB.
 - \bigcirc Sea c un escalar. Entonces $(\lambda+c)^2$ es valor propio de $A^2+2cA+c^2I$.
 - \bigcirc Si μ es valor propio de una matriz B de $n \times n$, entonces $\lambda + \mu$ es un valor propio de A + B.
 - $\bigcirc \ -\lambda$ es una raíz del polinomio característico de A.

13. Calcular

$$\lim_{x \to \infty} \sqrt{\frac{x^3 + 7x}{4x^3 + 5}}.$$

- $\bigcirc \infty;$
- $\bigcirc -\infty;$
- \bigcirc 0;
- $\bigcirc \frac{1}{2}$.
- 14. Calcular

 $\lim_{x\to 0^+} x^x.$

- $\bigcirc \infty;$
- \bigcirc 1;
- \bigcirc 0;
- \bigcirc e.
- 15. Sea α un número real, considera la serie

$$\sum_{n=1}^{\infty} n^{\alpha n}.$$

¿Para qué valores de α converge esta serie?

- $\alpha \leq 0$;
- $\bigcirc \ \alpha < 0;$
- $\bigcirc \alpha \leq -1;$
- $\bigcirc \alpha < -1.$
- 16. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ una función tal que su serie de Taylor converge a f(x) para todo número real x. Si f(0) = 2, f'(0) = 2 y $f^{(n)}(0) = 3$ para todo $n \ge 2$, entonces f(x) es igual a
 - $\bigcirc 3e^x + 2x 1;$
 - $\bigcirc e^{3x} + 2x + 1;$
 - $\bigcirc 3e^x x 1.$
 - $\bigcirc e^{3x} x + 1.$

- 17. Sea $\{a_n\}$ la sucesión definida recursivamente como sigue: $a_1 = \sqrt{2}$ y $a_n = \sqrt{2 + a_{n-1}}$. Entonces la sucesión $\{a_n\}$
 - O diverge;
 - \bigcirc converge a $\frac{2}{\sqrt{2}}$;
 - O converge a 2;
 - \bigcirc converge a e.
- 18. Sea f(x) = 1/(1+x), para $x \neq -1$. ¿Cuál es la n-ésima derivada de f(x)?
 - $\bigcirc (-1)^n n!/(1+x)^{n+1}.$
 - $\bigcap n!(1+x)^{n+1};$
 - $\bigcap -n!/(1+x)^{n+1};$
 - $\bigcap n!/(1+x)^{n+1};$
- 19. ¿Cuál es el máximo de la función $f(x,y)=x^2y$, dado que $x^2+y^2=1$?
 - $\bigcirc \frac{4\sqrt{3}}{27};$
 - $\bigcirc \ \frac{2\sqrt{3}}{9};$
 - $\bigcirc \ \ \frac{\sqrt{3}}{9};$
 - $\bigcirc \frac{2}{3}$.
- 20. Calcule la integral impropia $\int_0^\infty e^{-x^2} dx$.
 - $\bigcirc \sqrt{\pi};$
 - $\bigcirc \frac{\pi}{2};$
 - $\bigcirc \ \frac{\sqrt{\pi}}{2};$
 - O 1.
- 21. Calcule la integral definida $\int_0^{\pi/4} x^2 \cos x dx$.
 - $(\pi^2 + 8\pi 32);$
 - $\bigcirc \frac{\sqrt{2}}{32}(\pi^2 + 8\pi 32);$
 - $\sqrt{2}(\pi^2 + 8\pi 32);$
 - $\bigcirc \frac{1}{32}(\pi^2 8\pi + 32).$

$$x(t) = \cos(e^t);$$

$$y(t) = \sin(e^t);$$

$$z(t) = e^t;$$

con $t \in [0, 2]$ ¿Qué longitud tiene la curva?

- $\bigcirc \int_0^2 \sqrt{1 + e^{2t}} dt;$
- $\bigcirc e^4 1;$
- $\bigcirc \frac{e^4+3}{2}.$
- $\bigcirc \sqrt{2}(e^2-1);$

23. ¿Cuál es el volumen de la región cerrada en \mathbb{R}^3 acotada por $z=9-x^2-y^2$ y z=0?

- $\bigcirc \frac{27\pi}{2}$
- \bigcirc 18 π ;
- $\bigcirc \frac{81\pi}{2}$
- \bigcirc 81 π .

 $24. \ \frac{\partial \operatorname{sen}(xy)}{\partial x^2 \partial y} =$

- $\bigcirc -xy^2\cos(xy) 2y\sin(xy);$
- $\bigcirc -x^2y\operatorname{sen}(xy) 2y\operatorname{sen}(xy);$
- $\bigcap -x^2y\operatorname{sen}(xy) 2x\operatorname{cos}(xy);$
- $\bigcirc x^2y\operatorname{sen}(xy).$

25. Sea G un grupo finito tal que para todo par de subgrupos H, K de G se tiene que $H \subset K$ o $K \subset H$. ¿Cuáles de las siguientes afirmaciones son siempre verdaderas?

- \bigcirc G es cíclico de orden primo.
- \bigcirc G podría no ser abeliano.
- $\bigcirc \ G$ es un grupo cíclico de orden la potencia de un primo.
- \bigcirc G solo tiene dos subgrupos.

26.	Sea S_n el grupo de permutaciones de $\{1,\ldots,n\}$. Sea H el grupo generado por las permutaciones $(1,2)$ y $(1,2,3,\ldots,n)$. ¿Cuál de las siguientes afirmaciones es cierta?
	\bigcirc H es abeliano;
	$\bigcirc H$ el grupo diédrico D_n ;
	\bigcirc H es el grupo alternante A_n ;
	$\bigcirc H$ es todo S_n .
27.	¿Cuántos de sus elementos generan a \mathbb{Z}_9 ?
	\bigcirc 1;
	\bigcirc 6;
	\bigcirc 9;
	\bigcirc 8.
28.	¿Cuáles de las siguientes funciones definen una métrica en \mathbb{R} ?
	$\bigcirc d(x,y) = xy;$
	$\bigcirc d(x,y) = 0 \text{ si } x = y \text{ y } d(x,y) = 1 \text{ si } x \neq y.$
	$\bigcirc \ d(x,y) = \max\{ x , y \}$
	$\bigcirc d(x,y) = (x-y)^2.$
29.	¿Cuáles de los siguientes son subconjuntos compactos de \mathbb{R} ?
	$\bigcirc [0,1] \cup [5,6];$
	$\bigcirc \{x \in \mathbb{R} : x \ge 0\};$
	$\bigcirc \{x \in \mathbb{R} : 0 \le x \le 1 \text{ x es irracional } \};$
	$\bigcirc \{\frac{1}{n} : n \in \mathbb{N} \setminus \{0\}\} \cup \{0\}.$
30.	¿Cuáles de las siguientes funciones son uniformemente continuas?
	$\bigcap f(x) = \ln x$ en el intervalo $(0,1)$;
	$\bigcap f(x) = x \operatorname{sen} x$ en el intervalo $[0, \infty]$;
	$\bigcap f(x) = \sqrt{x}$ en el intervalo $[0, \infty]$;
	$\bigcap f(x) = \frac{1}{x^2+1}$ en el intervalo (∞, ∞) .